Limnol. Oceanogr., 44(8), 1999, 2017–2023

ثبت نشده
چکیده

High-latitude rivers supply the Arctic Ocean with a disproportionately large share of global riverine discharge and terrigenous dissolved organic matter (DOM). We used the abundance of lignin, a macromolecule unique to vascular plants, and stable carbon isotope ratios (d13C) to trace the high molecular weight fraction of terrigenous DOM in major water masses of the Arctic Ocean. Lignin oxidation products in ultrafiltered DOM (UDOM; .1,000 Da) from Arctic rivers were depleted in syringyl relative to vanillyl phenols (S/V 5 0.3– 0.5) compared to UDOM in temperate and tropical rivers (S/ V 5 0.5–1.2), indicating that gymnosperm vegetation is a major source of terrigenous UDOM to the Arctic Ocean. High concentrations of lignin oxidation products (83–320 ng L21) and a depletion of 13C (d13C 5 223.0 to 221.9) in UDOM throughout the surface Arctic Ocean indicate that terrigenous UDOM accounts for a much greater fraction of the UDOM in the surface Arctic (5–33%) than in the Pacific and Atlantic oceans (0.7–2.4%). In contrast, UDOM in deep water from the Arctic Ocean as well as waters from throughout the Greenland Gyre had relatively low concentrations of lignin oxidation products (24–45 ng L21) and was enriched in 13C (d13C 5 221.0 to 220.8). Terrigenous UDOM has a relatively short residence (;1–6 yr) in surface polar waters prior to export to the north Atlantic Ocean. Assuming that the bulk of Arcticderived DOM is compositionally similar to the UDOM fraction, we estimate that 12–41% of terrigenous DOM (2.9–10.3 Tg C yr21) discharged by rivers to the Arctic Ocean is exported to the North Atlantic via surface waters of the East Greenland Current. It appears very little terrigenous DOM from the Arctic is incorporated into North Atlantic Deep Water and distributed globally via deep thermohaline circulation. The Arctic Ocean receives ;10% of the freshwater and dissolved organic matter (DOM) supplied globally by rivers (Aagaard and Carmack 1989; Gordeev et al. 1996; Macdonald et al. 1998; Anderson et al. 1998), yet it represents only 1% of the global ocean volume (Menard and Smith 1966). Thus, the flux of terrigenous DOM to the Arctic Ocean is much greater on a volume basis than corresponding fluxes to the Atlantic, Indian, and Pacific oceans. Furthermore, the supply of terrigenous DOM to the Arctic Ocean may be

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limnol. Oceanogr., 44(4), 1999, 1184

that I can easily take to sea and consult as an authoritative reference. This book is not just an updated version of the Clay and Medwin predecessor—it is much more comprehensive, containing a good blend of theory and hard-won data from measurements made at sea and in the lab. The fact that its list price is less than the current price of the earlier book is an unexpected bonus! I strongly reco...

متن کامل

Limnol. Oceanogr., 44(2), 1999, 447–454

Geophysical and ecological dynamics within lakes of the McMurdo Dry Valleys, Antarctica, are controlled by the presence of permanent ice covers. Despite the importance of the permanent ice cover, there have been no studies that have examined specific couplings between changes in the geophysical properties of the ice covers and dynamic ecological processes within the underlying water column. Her...

متن کامل

Measuring the ecological significance of microscale nutrient patches

parative rapid ammonium uptake by four species of marine phytoplankton. Limnol. Oceanogr. 27: 814-827. -, J. J. MCCARTHY, AND D. G. PEAVEY. 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210-215. HEALEY, F. P. 1980. Slope of the Monod equation as an indicator of advantage in nutrient competition. Microb. Ecol. 5: 281-286. HUTCHINSON, G. E...

متن کامل

Synergistic effects in trace gas--aerosol interactions.

1. R. J. Cornett and F. H. Rigler, Science 205, 580 (1979). 2. W. Y. B. Chang and R. A. Moll, ibid. 209, 722 (1980). 3. M. Kleiber, The Fire ofLife: An Introduction to Animal Energetics (Wiley, New York, 1961). 4. B. T. Hargrave, Limnol. Oceanogr. 14, 801 (1969). S. W. W. Walker, Water Resour. Res. 15, 1463 (1979); R. J. Cornett and F. H. Rigler, Limnol. Oceanogr., in press. 6. M. N. Charlton, ...

متن کامل

Limnol. Oceanogr., 44(3), 1999, 699–702

Results of a 12-yr study in an oligotrophic South Carolina salt marsh demonstrate that soil respiration increased by 795 g C m22 yr21 and that carbon inventories decreased in sediments fertilized with nitrogen and phosphorus. Fertilized plots became net sources of carbon to the atmosphere, and sediment respiration continues in these plots at an accelerated pace. After 12 yr of treatment, soil m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999